Computational Inorganic Chemistry

HW-logo

  • Home
  •  
  • Current Research
  •  
  • Publications
  •  
  • Research Group
  •  
  • Gallery
  •  
  • Alumni
  •   
  • Contact


Dr. David Johnson              d.johnson@hw.ac.uk

Dave is working in collaboration with Dr Ai-Lan Lee on understanding Au(I) catalytic processes of the direct allylic etherification of alcohols.

His Ph.D. was supervised by Dr John Slattery and Dr Jason Lynam. One of the primary focuses of his research was the mechanism of pyridine C-H activation and subsequent alkenylation with a half-sandwich Rh(II) centre.3 Other studies involved a Ru(II) bis-acetate complex in alkyne / vinylidene tautomerisation, which led onto further catalytic studies with similar systems.1 Lastly, a selection of ligands were investigated with a combination of DFT/NBO methods in order to predict how their bonding topology related to their donating ability.2

Back to Group

Recent Publications

[9].

Structure of Amido Pyridinium Betaines: Persistent Intermolecular C-H···N Hydrogen Bonding in Solution
R. J. Thatcher, D. G. Johnson, J. M. Slattery, R. E. Douthwaite
Chem. Eur. J., 2016, 10, 3414-3421, DOI: 10.1002/chem.201503884

[8].

Gold-Catalyzed Proto- and Deuterodeboronation.
G. Barker, S. Webster, D. G. Johnson, R. Curley, M. Andrews, P. C. Young, S. A. Macgregor and A. L. Lee,
J. Org. Chem., 2015, 80 (20), 9807-9816, DOI: 10.1021/acs.joc.5b01041

[7].

Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study.
G. Barker, D. G. Johnson, P. C. Young, S. A. Macgregor and A. L. Lee,
Chem. Eur. J., 2015, 21, 13748-13757, DOI: 10.1002/chem.201501607

[6].

Gold(I)-Catalysed Direct Thioetherifications Using Allylic Alcohols: an Experimental and Computational Study.
L. Herkert, S. L. J. Green, G. Barker, D. G. Johnson, P. C. Young, S. A. Macgregor and A.-L. Lee,
Chem. Eur. J., 2014, 20, 11540-11548, DOI: 10.1002/chem.201403293

[5].

Palladium-Catalyzed Direct C-H Functionalization of Benzoquinone.
S. E. Walker, J. A. Jordan-Hore, D. G. Johnson, S. A. Macgregor and A.-L. Lee,
Angew. Chem. Int. Ed., 2014, 50, 14096-14099, DOI: 10.1002/ange.201408054

[4].

Mapping the Elimination of Water from Hydroxyvinylidene Complexes of Ruthenium(II): Access to Allenylidene and Vinylvinylidene Complexes in a Stepwise Fashion.
E. J. Smith, D. G. Johnson, R. J. Thatcher, A. C. Whitwood and J. M. Lynam,
Organometallics, 2014, 32, 7407-7417, DOI: 10.1021/om4009247

[3].

Ruthenium-Mediated C-H Functionalization of Pyridine: The Role of Vinylidene and Pyridylidene Ligands.
D. G. Johnson, J. M. Lynam, N. S. Mistry, J. M. Slattery, R. J. Thatcher and A. C. Whitwood,
J. Am. Chem. Soc., 2013, 135, 2222-2234, DOI: 10.1021/ja3097256.

[2].

Charged Behaviour from Neutral Ligands: Synthesis and Properties of N-Heterocyclic Pseudo-amides.
R. J. Thatcher, D. G. Johnson, J. M. Slattery and R. E. Douthwaite,
Chem. Eur. J., 2012, 18, 4329-4336, DOI: 10.1002/chem.201103319

[1].

Insights into the intramolecular acetate-mediated formation of ruthenium vinylidene complexes: a ligand-assisted proton shuttle (LAPS) mechanism.
D. G. Johnson, J. M. Lynam, J. M. Slattery and C. E. Welby,
Dalton Trans., 2010, 39, 10432-10441, DOI: 10.1039/C0DT00431F

News

22nd Feburary 2016

1st December 2015

10th October 2015

3rd June 2015

1st April 2015


Heriot-Watt University, Institute of Chemical Sciences, Edinburgh, Scotland, UK EH14 4AS